The impact of thickness and thermal annealing on refractive index for aluminum oxide thin films deposited by atomic layer deposition

نویسندگان

  • Zi-Yi Wang
  • Rong-Jun Zhang
  • Hong-Liang Lu
  • Xin Chen
  • Yan Sun
  • Yun Zhang
  • Yan-Feng Wei
  • Ji-Ping Xu
  • Song-You Wang
  • Yu-Xiang Zheng
  • Liang-Yao Chen
چکیده

The aluminum oxide (Al2O3) thin films with various thicknesses under 50 nm were deposited by atomic layer deposition (ALD) on silicon substrate. The surface topography investigated by atomic force microscopy (AFM) revealed that the samples were smooth and crack-free. The ellipsometric spectra of Al2O3 thin films were measured and analyzed before and after annealing in nitrogen condition in the wavelength range from 250 to 1,000 nm, respectively. The refractive index of Al2O3 thin films was described by Cauchy model and the ellipsometric spectra data were fitted to a five-medium model consisting of Si substrate/SiO2 layer/Al2O3 layer/surface roughness/air ambient structure. It is found that the refractive index of Al2O3 thin films decrease with increasing film thickness and the changing trend revised after annealing. The phenomenon is believed to arise from the mechanical stress in ALD-Al2O3 thin films. A thickness transition is also found by transmission electron microscopy (TEM) and SE after 900°C annealing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

Atomic Layer Deposition of Praseodymium Aluminum Oxide for Electrical Applications

Praseodymium aluminum oxide (PAO) thin films were grown by atomic layer deposition (ALD) from a new precursor, tris(N,N′-diisopropylacetamidinato) praseodymium, (Pr(amd)3), trimethylaluminum (TMA), and water. Smooth, amorphous films having varying compositions of the general formula PrxAl2–xO3 were deposited on HF-last silicon and analyzed for physical and electrical characteristics. The films ...

متن کامل

Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We...

متن کامل

Investigation of Structural, Morphological and Optical Properties of Chromium Oxide Thin Films Prepared at Different Annealing Times

Chromium oxide (α-Cr2O3) thin films were prepared using thermal annealing of chromium (Cr)films deposited on quartz substrates by direct current (DC) magnetron sputtering. The annealingprocess of the films was performed for different times of 60, 120,180 and 240 min. The influenceof annealing time on structural, morphological and optical properties of the prepared films wasinvestigated by diffe...

متن کامل

Effects of Cobalt Doping on Optical Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating Technique

Cobalt (Co) doped Zinc Oxide (ZnO) thin films, containing different amountof Cobalt nanoparticles as the Co doping source, deposited by the sol–gel spin coatingmethod onto glass via annealing temperature at 400˚C, have been investigated by opticalcharacterization method. The effect of Co incorporation on the surface morphology wasclearly observed from scanning electron microscopy (SEM) images. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015